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SU(3) in an O(3) basis 11. Solution of the state labelling 
problem 

J W B Hughes 
Department of Applied Mathematics, Queen Mary College, Mile End Road, London 
El 4NS. UK 

MS received 6 October 1972 

Abstract. The problem of I degeneracies in the reduction of irreducible representations 
( p ,  q)  of SU(3) with respect to its O(3) subgroup is considered. Orthonormal states corres- 
ponding to the same I value are defined as eigenvectors of hermitian operators and, by the 
use of I shift operators, an algorithm is given for the calculation of the eigenvalues of these 
hermitian operators. A full analysis is given of the @. 0) representations, which contain no 
I degeneracies, and all eigenvalues of the third and fourth order O(3) scalar operators are 
calculated for the (4,2), (5,2) and (6,2) representations which contain doubly I degenerate 
states. 

1. Introduction 

In a previous paper (Hughes 1973a, to be referred to as I)  the notation of which will be 
employed here, the operators 0: and 0:’ were constructed from the generators of 
SU(3). These shift the eigenvalues of I ,  which labels the irreducible representations of the 
O(3) subgroup by, respectively, f 1 and f 2. The hermiticity properties ofthese operators 
were discussed, and expressions for various I commuting products given in terms of the 
SU(3) invariants I , ,  I ,  and the O(3) scalar operators 0: and Qp. 

In this paper we shall use these shift operators to obtain an algorithm for the calcula- 
tion of the eigenvalues of 0: and Q: thereby, since these latter operators are hermitian, 
giving an orthogonal solution to the state labelling problem. 

The irreducible representations of SU(3) are labelled by the integers (p, q )  satisfying 
p 2 q 2 0 (Baird and Biedenharn 1963) and related to I ,  and I ,  by equations (1) and 
(2) of I. The 1 content of (p ,q)  is already well known (Elliot 1958a, b, Bargmann and 
Moshinsky 1960, 1961, De Baenst-van den Broucke et a1 1970), p being the maximum I 
value and n, the greatest degree of I degeneracy occurring, being equal to the largest 
integer less than or equal to i q  + 1. The exact 1 content of (p ,  q )  is shown in figures 1 and 2 
for, respectively, even and odd 4. The problem of classifying and distinguishing between 
orthogonal states corresponding to the same degenerate I value has not, however, been 
completely solved (Racah 1962), although Bargmann and Moshinsky (1961) showed how 
in principle the eigenvalues of 0; could be calculated using expressions they obtained for 
its matrix elements between non-orthogonal states. An explicit expression for its 
eigenvalues was, however, obtained only for the non-degenerate @, 0) representations, 
and this agrees with equation (61) given here. It is with respect to this state labelling 
problem that new results will be obtained here. 

28 1 



282 J W B Hughes 

P 
P - 1  
P -  2 
P - 9 + 3  
P - Q + z  
P - 9 +  I 

P - 9  
P - 9 - 1  
P-(7-2 

Figure 1.  Decomposition of the SU(3) representation ( p ,  q j  into O(3) multiplets for men  \a lueb  
of 4. Each full circle represents an independent multiplet whose I value is giben on the left 
or right of the diagram. The bottom right hand corner depicts multiplets for eben p :  if p is 
odd the I = 0 multiplet is replaced by an I = 1 multiplet, and only one i = 2 multiplet occurs. 
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Figure 2. Decomposition of the SU(3) representation ( p .  4 )  into O(3) multiplets for odd 
values of 4. 

Although the maximum I value of ( p ,  q )  is already known, it will be rederived in $ 2  
since this will provide a simple illustration of the way in which the shift operators work. 
In  so doing the previously uncalculated eigenvalues of 0: and Qp will be obtained for 
the maximum I state, together with those of various products of the shift operators which 
will be needed to proceed to states of lower 1 values. 

In 0 3 we shall continue the analysis of (p, q )  as  far as the (p-4) states. The method 
by which all states of the representation may be classified will then be clear, although 
we shall not be able to give the matrix elements of operators for states beyond 1 = p-4. 
Unfortunately these matrix elements become increasingly laborious as the / value 
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decreases, and it is unlikely that general expressions exist giving them for arbitrary p and 
4 .  However it will be clear how one may proceed to a full analysis of any representation 
corresponding to fixed values of p and 4 ,  although for any but very low values of these 
parameters, such an analysis would be enormously laborious and probably require a 
computer for its execution. The solution to the state labelling problem given here will 
therefore be in the nature of an algorithm rather than an exact solution for arbitrary 
representations ; an exact solution probably does not exist. 

The matrix elements calculated in 8 3 will be sufficient for a complete analysis of the 
double I degenerate (4,2), ($2) and ( 6 , 2 )  representations. Since it would be laborious 
to write down all the matrix elements for these cases, we shall content ourselves by giving 
only a table of the eigenvalues of 0: and Qp in the Appendix, together with those for 
the non-I degenerate adjoint representation (2, 1). A list of all the matrix elements for 
these representations is given by Hughes (1971). 

Since the (p, 0) contain no 1 degeneracies, a full analysis of these representations is 
possible. In 8 4 we therefore obtain for arbitrary p the eigenvalues of 0: and Qp, and the 
actions of the shift operators on states of arbitrary I for these representations. In 5 5 we 
discuss various extensions of the present work. 

Throughout this paper, attention is restricted to states corresponding to zero m, 
the eigenvalue of the diagonal O(3) generator I , .  Since, as mentioned in I, the eigenvalues 
of 0: and Q: are independent of m, no great loss of generality and a good deal of 
simplification results from doing this. It also eliminates from our considerations the 
internal structure of O(3) representations, which is not relevant to the state labelling 
problem. 

2. The maximum I state of (p, q) 

Before considering the maximum 1 state, we first note that since the representations (p, 4 )  
and ( p , p - 4 )  are mutually contragredient, all formulae relating to ( p , p - q )  may be 
obtained from those of (p, 4 )  merely by changing the sign of all odd-ordered operators, 
such as 0; and I,, leaving unaltered the signs of even-ordered operators like L2,  Q: and 
I,; clearly the 1 contents of (p, 4 )  and ( p , p - q )  are exactly the same. For this reason it 
suffices to consider representations ( p ,  4 )  where 4 < [fp], the largest integer which is less 
than or equal to 9; these are the representations for which the eigenvalues of I, are 
greater than or equal to zero. 

As long as no confusion is possible as to which representations we are considering, 
we shall suppress p and 4 in the basis vectors ; since we are considering states correspond- 
ing to  m = 0, we shall simply denote them by \ I ,  a,) or, if I is non-degenerate, by \ I ) .  The 
formulae for the matrix. elements and eigenvalues of the double and triple product 
operators will be valid only when m = 0, but those relating to the O(3) scalars Of and 
Q: will be valid for all m and therefore perfectly general. 

The following property of the double product operators will be extremely useful: 
suppose ( I ,  a,JO;+',O: ' I I ,  a,) = 0. Then from equation (I, 28), ( I +  1, b,, ,IO: '11, a,)  
vanishes for all states / I +  1, br+ so 0: ' ] I ,  a,) = 0. On the other hand, equation (I, 28) 
also implies that (1, a,JO;+',Il+ 1, b,+ ,) vanishes for all ) I +  1, b,+ '), so we can never 
obtain ) I ,  a r )  by the application of 0;+l1 to an ( I +  1) state. Similar considerations hold 
for the other double product operators. 

Now let the maximum value of I occurring in the representations (p, 4 )  be 2 and i t )  
a corresponding state (there is no need to assume that 2 is non-degenerate). Since states 
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II+ 1 )  and 11+2) do  not exist we must have 

0: ' I / )  = 0. 01' 211) = 0 

which immediately imply that 

o,', 0; '11 )  = 0. 0;+2,0;21i) = 0. ( 2 )  
From the above-mentioned property of double product operators we see that (2)  are 
sufficient as well as necessary conditions for (1). 

Substituting (2) in the expressions ( I ,  45) and (1.46) for Qp and (0;)'. we obtain 

QPli) = - 6(1+ 1 )  { 12(2i+ 3)12 - i(2l2 + 14i+ 3 ) ;  li} 

Of ( t )  = * 3 ( i +  1)(2i+3){24l2-21(/+4); '  'ii) 

( 3 )  

and 

(4) 
where the sign for 0; is as yet undetermined. These imply that Qf and 0; are diagonal 
operators with respect to l l ) ,  and consequently that [Qp, Oplll) = 0. Using equation 
( I ,  42) we can now calculate 0{-',0~~10< ' I / )  in terms of 1,. 1, and I :  since 0; ' i i) = 0. 
this must vanish so we consequently obtain the following equations to be solved for i :  

i8,:6i3 = j24i2-2i(i+4)j1 * : ( I +  i ) ( j + 3 j - x 2 ;  ( 5 )  

where the i. correspond to those appearing in equation (4) for OF. Squaring this and 
using the expressions (I ,  1 )  and (I, 2)  for 1, and I, in terms of p and q we arrive at the 
equation 

( 6 )  

Thepossiblevaluesofiaregiven by the rootsofthisequation. Clearly theonlypossibilities 
consistent with i >, 0 a n d p  3 q 2 0 are = p .  p - y -  I and y -  I .  

In order to eliminate two of these possibilities we use the criterion that Oi+li 0; ' be a 
positive definite operator. Now from equation (1.47) we have 

( i - p )  ( I  + + 4) ( I  - y + 1 ) ( i  + cl + 3 )  ( i  - + + 1) ( I  + - + 3 j = (1. 

O;Y,O;~IQ = -24i2(i+ 1)2(2 i+  1 )  ; ~ - i ( i + 3 ) l l i ) .  

soclearly91,-1(1+3) < 0. Wheni  = p - y - l , 9 1 2 - / ( l + 3 )  = ( p T I ) ( y + 2 )  3 0,which 
is not permissible and when 1 = y - l \ 9 1 2 - i ( l + 3 )  = @ + I ) ( p - q + 2 )  2 0. also not 
permissible. However, when 1 = p, 91, - i(l+ 3) = 4(y -p) 6 0, so the maximum value of 
2 occurring in the representation (p. q )  can only be l = p .  To prove that ( p ,  q )  does in 
fact have a mximum we should need to make further use of the hermiticity properties 
of the shift operators, since we have not eliminated the possibility that an / I +  1)  state 
could still be obtained by the application ofOi+-2, to / I -  1). We shall not do  this, however. 
since SU(3) is a compact group and its unitary representations must therefore all be 
finite dimensional; it is in fact known (Baird and Biedenharn 1963) that @ , q )  has 
dimension i { ( p - q  + l)(p+2)(q + 1)1. l must therefore exist. and from the above it can 
only be p .  

We can now determine the correct sign for O f :  equation (5) contains the factor 
( I +  1)(1+3)-312 = &+q+3)(2p-q+3).  which is positive. As mentioned earlier we 
need consider only values of q < [fp] : since therefore 1, is positive we must clearly take 
the positive sign in (5) and hence also in (4). Had we considered the contragredients of 
such representations, for which q 3 [fp], 1, would be negative and we should have to 
take the negative square root for 0;.  This of course fits in with the fact that on passing 
from (p.  q )  to its contragredient ( p ,  p-q)  odd-ordered operators like 0: change sign. 
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In this respect it is worth noting that equation (6) is symmetric under the interchange 
of4 and p - q ,  a feature which will be shared by all other formulae obtained in this paper. 

To summarize, apart from obtaining the already well-known fact that p is the 
maximum 1 value we have also obtained the actions of Q,” and 0: on the maximum 1 
state Jp). These, together with the actions of other product operators which will be 
needed in the subsequent analysis, are 

Q i I p )  = -2(P+ 1) {2p3 -2(+ + 3)p2 +(8q2 - 1% +27)p+ 12q’)lp) (7) 

(8) 

(9) 

(10) 

O;IP) = J~(P + 1 ~ 2 ~  + 3 ) ( ~  - 2q)ip) 

o;:lo;llP) = 24P2(P+ 1)2(2P+ l)(P-qklp) 

0 ; ? 2 0 ,  
o+l o+l 

Equations (9) and (10) were obtained using (I, 47) and (I, 48), whereas (1 1) was obtained 
by substituting 0; and Q,” into (I, 40). 

= 48p3(p - 1)’(2p + l)(p3 - 2p2 + (1 - 2q)p + 2q2)lp) 

p -  1 p - 2 0 p 2 I P )  = 96J6(2P+ llP3@+ 1)2(P- 1)2(P-2q)(P-qhlP). (11) 

3. Further analysis of @, q)  

The next step in our analysis is to consider the 1 = p - 1 state defined by Ip - 1) rc 0, ‘ 1 ~ ) .  
From (9) we see that this exists provided q # 0 ;  since we shall treat the case q = 0 
separately in 4 4 we exclude it here and assume Ip - 1) to exist. It is already well known, 
and can be seen by inspecting figures 1 and 2, that 1 = p - 1 is non-degenerate ; we shall 
not therefore give a rigorous proof here, and content ourselves with noting that since 
I p + l )  does not exist there is no possibility of a different (p-1) state arising from 
O;:,lp+ 1). Also, as mentioned in 4 2, the assumption that 1 = p is non-degenerate is 
also not necessary. To prove it rigorously we should have to show at every step of the 
analysis that in obtaining an 1 state from a state ofhigher 1 by the application of a lowering 
shift operator of one kind, it is not possible to start a different chain of states of increasing 
1 values by the application of the raising shift operator of the other kind. However, since 
the non-degeneracy of 1 = p ,  and in fact the degeneracy of every 1 value, is well known, 
we shall save space by omitting such a proof. 

First, since Ip+ 1) does not exist, we have 

(12) 0 - 2  0 + 2  
p + 1  j7-1IP-1) = 0. 

Next, using the non-degeneracy of 1 = p and 1 = p-  1 in (I, 30), we have 

(PIO,+’lO,’IP) = (P-llo;lo,+-!llp-l), 

so from equation (9) we obtain 

o;10;211p-l) = 24p2(p+1)2(2p+l)(p-q)qlp-1), 

and then from (I, 45) and (I, 46) we get 

Q,”- 1Ip - 1) = -2{2p4 -4(% - l)p3 + ( 8 q 2  - 28q + 6 9 ) ~ ’  +(28q2 - 1% -27)p 

+12q2jIp-1), (14) 

(O,O-1)’lp-l) = 6 ( ~ ~ + 3 ) ~ ( 2 p +  1)2(p-2q)21p- 1). 

Substituting O;lO;+’lO~?llp- 1) = 0 in (I, 39) and using the above expressions for 
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Q”,-,1p- 1)and(0~- , )21p-  l)yieldsanequationgiving0;- Jp-  1)  intermsof1,lp- 1 )  
whose solution is 

(15)  O,-1Ip- 0 1) = ,/6(p+3)(2p+ 1)@-2q)lp- 1). 

The following formulae will be needed in the subsequent analysis : 

0;-~,0;-~,1p-i) = 48p(p+ i ) ( ~ - 1 ) ~ ( 2 ( q - i ) p ~ - ( 2 q ?  -2q-i)p-2q2)lp- 1 )  (16) 

(17) 
0,’-230,-211p- 1) = 48(2p- l)p(p- 112(p -2)2{p”6p2 -(6q - 17)p+6(q2 -2)jIp- 1 ) 

0,’0;-2,0;-ll~p- 1) 

- - 0;-1,0, 2 0 i - 1 1  Ip - 1 ) 

= 96J6(2p+ I ) @ +  l ) 2 p 3 ( p -  1 ) 2 ( p - 2 q ) ~ i ( P - ~ ~ ) ~ p -  1)  (18) 

O;~z0;-130;~ 1 lp - 1 ) 

= 96,/6(2p- l ) (p+  1)pCp- 1)2@-2)2(p-2y) 

x j(3q-2)p2-(3q2-3yt4)p-3(q’ -2111~- 1). ( 19) 

Equations (16), (17) and (19) were obtained using (1.47) (1.48) and (1.40): (18) was 
obtained using the hermiticity relation ( I ,  34). and ( I .  31) which implies the equality of 

( p -  1/O~-1,0~20,’-’lIp- 1 )  and (p10~!,0,+_’20p21p) 

We can now also obtain the matrix elements of 0,; and O,T-’ 1 .  From (I, 29) we have 

1 
(PlO;.!l0, ‘IP) = z l ,p -  1I(P- 110, 1/P)12 = ;-l(Pl0;-llIP- t > 1 2 .  

1 . p -  1 

We shall use the phase convention that ( p  - 110; ‘ l p )  be real and non-negative ; this 
implies that (pI(0; ‘ ) + l p -  I )  and therefore also, by (I ,  23). (piO~-’llp- 1) are real and 
non-negative. Using (9) we obtain 

0,’lIp- 1 )  = 2 , 6 ( ~ +  I ) P ( ( ~ P -  1Mp-q))’  ’ 1 ~ ) .  (21) 

The next stage is to consider states corresponding to 1 = (p - 2) and here we hake to 
deal with the problem of degeneracy since they can be arrived at in two independent 
ways, namely from 0; ’ I p )  and 0;: lp- 1). Our aim is to define two mutually orthog- 
onal states Ip- 2, 1) and Jp-2,2), which could be done by defining them to be eigen- 
vectors of 0:-2 or QE-,. However, it would be difficult to do this immediately and 
instead we define them using the shift operators. lp-2, l )  could be defined as the 
normalized state obtained from either O;’/p) or O;-’,lp- 1).  Neither of these 
choices is particularly more convenient than the other and we choose to define 
lp-2, 1) K 0 , 2 1 p ) .  Now since 

0;220,21P) x IP), 0,+-2,1P - 2. 1) x IP) 

and so 0; 20,’-z,lp - 2 , l )  x Ip - 2 ,  1 ) ; hence Ip - 2, I )  is an eigenvector of 0; 20;2, . 
Using (p-2, 1)0,20~-221p-2, 1) = (p10,+?,0;’/p) and (lo), we obtain 

(22) 0,20,’_221p-2, I )  = 48(2p+ l)p3(p- 1 ) 2 { p 3 - 2 p 2 + ( 1 - 2 q ) p + 2 q 2 ) ~ p - 2 .  1). 
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We can also easily deduce that 

Oi22lp-2, 1) = 4 J3p(P- 1){p(2p-3)(P3-2p2+(1 -2q)p+2qz)j1’21p). (24) 

Now define Ip - 2,2) to be a normalized state orthogonal to Ip - 2 , l )  (its phase will 
be chosen later). By hermiticity we have 

(PP;-’,lP-2? 2) = % , p - 2  (p-2, 210,21p)* = 0, 

so O,f_2,lp-2,2) is orthogonal to Ip) and therefore, since 1 = p is non-degenerate, 
0,’_2,lp-2,2) = 0. This then implies that 

O,2O,+_2,lp - 2,2) = 0. (25) 

From (22) and (25) we see that Ip - 2, 1) and Ip - 2,2) correspond to distinct eigenvalues 
of the hermitian operator 0, 20i-22 ; this then guarantees their orthogonality. 

We next obtain the actions 0;-’,O,._l2 on Ip - 2, 1) and Ip - 2,2). Suppose 

Oi- l l /p- l )  = alp-2, 1)+blp-2, 1). (26) 

Then by hermiticity we have 

og21p-2, 1) = “,,p-2a*lp-l), O;?Jp-2,2) = ~ l , ~ - z b * I p -  1). (27) 

For convenience denote 

0; ‘IP) = YIP- O;:,lP - 2, 1) = 61ph 

0,’O;_220p:1~p- 1) = Alp-  l), O,+_’2O,=’,/p- 1) = Blp- l),  

where y ,  6, A and B are already written down in this paper. Now 

O,’O,f_220,_’1Ip-l) = ~~O,’O,+_Z2(p-2,l)+bO,’Oi_Zzlp-2,2) = a6ylp- l) ,  

so a = A/$. Also 

O,._l,O;-’ Jp - 1) = aO,f_’,lp-2, 1) + bO,+_’,(p-2,2) = ~ l ~ , ~ - , ( l a l ~  + Ib12)[p- l), 

so 
B 

@ l , p - 2  
la12. IbJZ = ___- 

We see that whereas a has already been chosen real and non-negative, the phase of b 
is still undetermined, so we choose it to be also real and non-negative. Using the 
expressions for y ,  6, A, B and a l , p -  we readily obtain a and b which on substitution in 
(26) and (27) give 
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Using these equations we may obtain the following equations : 

0,=’10;121p-2. 1) 

48p’(p- I)’(p+ 1)([1-2~/)  
- _-  48@- I)2(P-29)’i’9@-4!lp-7 -. 1 ) +  _ . ~ ~ ~  

p3-2p2+(1  - 2 q ) p + 2 q 2  p3-2p2+(1 - 2 q ) p + 2 q ?  

x ( ( 2 p - I ) ( p +  I ) @ -  l ) q ( q -  1)@-Y)(p-q- 1 ) ; ’  ’Ip-2 2 )  

48p’(p- I ) ? @ +  l ) ( p - 2 q )  
p 3  - 2 p 2  + 1 1 - 2y)p + 2yz 

(31 1 

O;_’,o,’,Ip-2.2) 

- .  ~- - 

X { ( 2 p  - 1 ) ( p  + 1) @ - 1 )9(9 - 1 ( p  - ( 1 )  ( p  - Li - 1 ) I - 2. 1 i 

48p3@- Il3(2p- 1)@+ 1) (y -  l ) (p-q-  1 )  +------ __ -~ jp - 2 . 2 ) .  (-72) 
p 3  - 2 p 2  + ( I  - 2 q ) p +  2q2 

We are now in a position to calculate the actions of O,”,O;?, . 0,?,0,?2. (0;- ?) ’  

and Q:-‘ on Ip-2 .  1 )  and l p - 2 . 2 ) .  The expressions for these actions are rather 
laborious to write out for the general case and so we shall omit them here: for the ( p .  2) 
representations they are given by Hughes (197 1). In defining the 1 = p - 3 and I = p - 4 
states we shall be content to give the general method of writing down the matrix elements 
of the various operators and omit their explicit expressions. The matrix elements of 
0:-2 can be calculated from those of (O:_,)’ and 0 , - ’ , 0 ; ’ O ~ ? 2 .  the latter being 
obtained from the already given expressions for OX?,lp - 2. 1). O,’?&J - 2.2) .  0;  l i p )  
and O;211p-l). At the end of this section we shall discuss the general problem of 
obtaining matrix elements and  eigenvalues of 0; in cases of I degeneracy. and in the 
Appendix write the eigenvalues down for the (4.2). ( 5 . 2 )  and (6.2) representations. 

Passing first to the 1 = (p - 3) states. we define Ip - 3. 1) to be the state obtained by 
application of O;?[ to / p -  1) and lp-3.2) to be the state annihilated by 0,“3. We 
then obtain, in a manner entirely analogous to that used for the (p - 2) states. the following 
actions : 

op?, o,’-’31p - 3, 1 ) 

= 48(2p- l)p(p- 1)’(g- 2 ) 2 ( p 3  - 6p2-(6q - 17)p+6(q2  - 2 ) )  jp - 3. 1 )  133) 

pip’ - 6p2 - (69 - 1 7 ) p  + 6(q 
Oi? l lp - l )  = 4,3(2p-l)(p-l)(p-2) _ _ _ - _ _ - -  1p-3.  I ) 

2 p - 5  
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Equations (33) and (36) show that lp -3 , l )  and lp-3,2) are eigenvectors of the 
hermitian operator O;? ,O;? corresponding to distinct eigenvalues, and so must 
be orthogonal. Ip-3, 1) is normalized and its phase has been determined by the 
requirement that O;?, have a real non-negative matrix element between Ip- 1) and 
Ip - 3 , l ) .  The phase of Ip - 3,2) is as yet undetermined. 

Now we show how to obtain the actions of O;-’,0,._13 on Ip-3,l)  and Ip-3,2). 
This is rather more complicated than for the (p - 2) states since we now have two (p - 2) 
states as well as the two (p - 3) states. There are two methods of doing this, the first 
method being to use the matrix elements of O,”,O;_’, and O ~ l 2 0 ~ l 3 O ; ? , .  This 
method, which is given in detail by Hughes (1971), suffers from the disadvantage that 
although the above matrix elements are relatively simple to calculate, the resulting 
matrix elements of O;:, involve sign ambiguities which in general cannot be solved, 
although for the (p, 2) representations these ambiguities do not arise. This disadvantage 
is not present in the second method, which we now discuss. 

Suppose 

O,=’,lp-2, 1) = allp-3, l )+b, lp-3,2)  

so that by hermiticity 

We denote 

O,f_’,lP-2, 1) = vllp-l), O,+_’,lp -2,2) = v2Ip - 1) 
O;?lIp- 1) = €1~-3,  l),  

all of which have been given in this section, and 

( p - 2 ,  i10,=’10,+_230~-121p-22,j) = A j i ( i , j  = 1,2). 

The A j i  can be calculated from formulae already derived in this section and (1,41), 
since from the known expressions for the actions of 0; ’0,+_2, and 0i-l 10,f_’2 on lp - 2 , l )  
and Ip - 2,2)  we may calculate those of QE- 2 ,  (0;- 2 ) 2  and, with some difficulty, 0;- , . 

Now since (p-2, i10;20;?21p-2,j) and (p-2, i~O,=’,O,+_’,~p-2,J)arereal,soare 
(p-2, zlQi-21p-2,J) and (p-2, i~(O~-z)zlp-2, j ) .  One may easily deduce that 
( p  - 2, i10,- ,lp - 2,j)  are also real, so finally the A j i  are all real. Now 

A 11Ip -2, 1 )  + A1,lp- 2 3 2 )  
- 0 - 1  0 + 2  0-1 

= a 0;: Ol?,lp - 3 , l )  + b , O i l  10,+?31p - 3,2) 
- p - 1  p - 3  p-ziP-2J) 

= ~~O,-’,O,f?3/p-3, 1) 

= a1~2,p-3q-111P-  1) 
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But a 2 , p - 3 i : ~ l , p - 2  = al ,p-3,  so using the orthogonality of lp - 2. 1 ) and / p  - 2.2) .  we 
obtain 

'1 = A l l ~ c v l z l ~ p - 3  = A 1 2 , ' c v 2 z 1 . p - 3  

By considering Op-2 10;?30;121p - 2 . 2 )  we obtain also 

U 2  = A 2 , ' c v 9 I , p - 3  = ~ * l ~ ~ ~ ~ l ~ l , p - 3 '  

We see from this that in fact only two of the Aji need to be known. Note that the u,  are 
real. We still have to  calculate b and b ,  : denote 

( p - 2 .  i 1 0 ~ ~ 3 0 ; 1 2 1 p - 2 . j )  = Bji ( i  = 1. 2) .  

Then 

B ,  ,lp - 2. 1 )  + B , , / p  - 2 . 2 )  

= 0,+130;l,/p-2. 1 )  

= U 1 O ; ' , / p  - 3 ,  1 ) + h O;-',jp - 3 . 2 )  
- - Z , , ~ - ~ ( U , ( U T I ~ - ~ .  l)+aTIp-2. 2 ) ) + h l ( h ~ j p - 2 .  I )+hT/p-2 .  2 ) ) ; .  

sobyequatingcoef-ficientsoflp-2. I ) a n d / p - 2 . 2 )  w e o b t a i n / i ~ , / 2 + f h , i 2  = B ,  I x , , , , -  
and a,aT+blbT = B , ,  a l , p - 3 .  By considering O,+?,O;?,lp-2,2) we further obtain 
/a,12+/b2/2 = B 2 2 3 ' a 1 , p - 3 .  b ,  and h ,  are determined up to a phase by the first and last 
of these equations. Since we have not yet chosen the phase of Jp- 3 , 2 ) .  we may nou 
choose it so that b ,  is non-negative and  real. h,. which must therefore also be real. is 
now completely determined by the second of the above equations. 

Having obtained a ,  ~ etc. we can calculate in a straightforward manner the actions 
ofO,?,O;?,on l p - 3 .  1 )  andlp-3 ,2) .  Knowing0,?10i?3 on thesestateswecan then, 
using (I ,  45) to  (I, 48), calculate the actions of all other operators including Q:-- and. 
eventually, 0;- on Ip- 3. 1 ) and Ip - 3.2). For  the ( p ,  2) representations (Hughes 197 1 1 
considerable simplification occurs in the above calculations since h I and  b2 both vanish 
so that jp - 3 ,2 )  does not exist and so 1 = (p - 3) is non-degenerate. 

So far we have treated only the simplest case of twofold 1 degeneracy and  shown that 
our procedure is completey adequate for dealing with such cases. I n  order to tnake 
reasonable the assertion that it works, in principle. for all order degeneracy i t  is worth 
giving an  outline of the procedure for the next simplest case of threefold 1 degeneracy. 
The 1 = (p-4) states provide us with such an  example, and we therefore give a brief 
discussion of them. 

In defining two of the (p-4) states we use the shift operators O;?, acting on the 
I p - 2 .  i). The procedure here is not as straightforward as that used in defining the 
( p - 2 )  and ( p -  3) states since if we define 

l p - 4 . u )  x 0;2, lp-2.  I )  and ip-4.h)  x O;ZzIp-2 .2)  

we have no guarantee that they will be orthogonal because they will not in general be 
eigenvectors of the operator O;?,O,'_',. To see this note that from ( I ,42)  O;'240p!2 
depends on one (and only one) non-diagonal operator, namely Op?,0pt12. SO 

(p-2 ,2 /062 ,0;? , /p-2 .  1 )  must be non-zero. However. 

(p - 2. ~~o,C,o;~,lp - 2. 1 ) 7 ( p  - 2.210,',lp - 4. t i ) .  
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so ( p -  2,2(0;-’,(p-4, a)  # 0. Now 

(p-4, bl0,?20,+?4lp-4, U )  

= (P-4,blO,=Z2lp-2, l)(p-2,  110;?4lp-4,~) 

+(p-4,  blo,?2lp-2,2)(p-2,210;?,lp-4, U )  

and whereas the first of these terms vanishes, the second does not so O;?20P+?4 has a 
non-vanishing off-diagonal matrix element. 

Instead we define Ip -4, 1 ) and / p  - 4,2) to be eigenvectors of O;?,O,’?, , that is. 

so that by hermiticity 

Denote for convenience 

0,+?40;-221p-2, 1 )  = ~ , , / p - 2 ,  l)+C121p-2,2) 

0;240;?2lp-2,2) = c12/P-2, l)+c22lp-2,2),  

where the C i j  may be assumed known (they can easily be calculated from the expressions 
for 0; 20,+_2,)p - 2, i }  and 0i-l O,+_’,lp - 2, i) given earlier on). 

By considering the actions of 0,’2,0;?, on Ip - 2, i )  one easily obtains 

, (42) c12 C T C ~  +dTd2 = ~ 

‘1.p-4 ‘1.p-4 ‘ l ,p -4  

c 2 2  
I C 2 / 2 + l d 2 1 2  = -, Cl 1 

l C 1 1 2 + l d 1 1 2  = -, 

and from the actions of O;?20P+24 on (p-4, i) follow 

(43) D2 2 
ld112+ld212 = -. Dl I c?dl +cTd, = 0, J C l I 2 + I C 2 1 2  = -, 

a 1 , p - 4  ‘ l ,p -4  

Equations (42) and the first of (43), which arises because lp-4, i) were chosen to be 
eigenvectors of O;?20P+?4, can be used to solve for c 1  etc, and the last two of equations 
(43) may then be used to obtain the eigenvalues of 0;2,0,’?,. 

Elimination of d ,  , c2 and d 2  gives rise to a quadratic equation in I c , ~ ~ ~ ,  this also being 
satisfied by Idl12. The solutions are 

( lC1 l2  and (d1l2 could have been interchanged-this would be equivalent to interchanging 
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the roles of Ip - 4, 1) and 1p - 4,2))  and 

lp - 4, 1 ) and / p  - 4 ,2 )  can be chosen so that c ,  and d I are real and non-negative. and the 
phases of c, and d2 then determined by requiring compatibility with the equations 
~ ~ , ~ ~ + d ~ d ,  = C12,~ l ,p-4 and c , d ,  + 4 d 2  = 0. 

Having determined all these constants, the eigenvalues D ,  , and D,, of 0 - 2  p - 2  0'' 11-4 
can then be determined. In general these will be different so that lp - 4, 1 ) and / p  - 4.2) 
will be orthogonal. The definition of the third state is easy. ( p  - 4.3) being chosen so that 
OP+?4 annihilates it. that is. 

o,20,'-24~p - 4. 3 )  = 0. 

This guarantees that lp-4, 3) is orthogonal to the other two states. 
The actions of O i l ,  on the (p - 3) states and OJ., on the (p - 4) states can be obtained 

from the matrix elements of Ol-140;d3 and, for instance, O ~ - 1 , 0 ~ ? 4 0 ~ ~ 3 ,  which by this 
stage will have already been calculated. The actions of all the other operators on the 
(p- 4) states can then also be calculated, enabling one to obtain both the eigenvalues and 
eigenvectors of Qj -4  and O j - 4  and also to  proceed to the consideration of the ( p - 5 )  
states. 

The method of defining states corresponding to  arbitrary 1 values should by now be 
clear; these definitions, together with the way in which the 0t2 operators interconnect 
the various states, are illustrated in figure 3. Eventually, as I passes below the value [PPI. 

P +  I 
P 
P -  I 

P - 2  

P - 3  

P - 4  

P -5  
P - 6  

Figure 3. The I values occurring in (p ,  4). Each full circle represents a state and all states are 
orthonormal. The operators 0:' have non-vanishing matrix elements between any two 
states connected by a single line with arrows. A line with a single arrow ending in a cross 
indicates that the state from which i t  originates is annihilated by 0: '. All states correspond- 
ing to consecutive values may also be connected by the 0: '. 
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its degeneracy will start to decrease again, and this will be effected by the annihilation of 
states by OF2, in a manner parallel to the annihilation, for I > [$I, of states by 0:’ 
This is illustrated by Hughes (1971) for the representations (4,2), (5,2), (6,2) in which 
the matrix elements of all operators are listed for all states. In this paper we merely 
illustrate the actions of the shift operators on the states of these representations in, 
respectively, figures 4, 5 and 6, and give in the Appendix tables of eigenvalues of Qp 
and 0: for the three representations. Note that in (4,2) the Ip - 3) state does not occur, 
and neither does lp-4,2), 10) corresponding to lp-4,l). On the other hand, in (5,2) 

Figure 4. States of (4,2) plotted against I values. Each state is represented by a full circle 
and all states are orthonormal; states connected by a line with single or double arrows are 
connected by, respectively, 0: or Ot*. A line connecting a state to a cross indicates that 
it is annihilated by the corresponding shift operator. 

Figure 5. States of ( 5 , 2 )  plotted against 1 values. The notation is the same as in figure 4. 
(5,3) is represented by exactly the same diagram. 
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2 

Figure 6 .  States of (6.21 plotted against i balueb. The notation IS the same a \  111 figure 1 
(6.4) is represented by exactly the same diagram. 

(p-4. 1 )  does not occur and 11) corresponds to lp-4,2).  All states considered in this 
section occur in (6,2). 

We end this section with an outline of the method of obtaining the eigenvalues of 0: 
once those of (Op)2 are known ; we shall consider only the case of double I degeneracy. 
the procedure when the 1 degeneracy is greater being an obvious extension of this. Let 

and suppose that 

i =  1.2. 
J =  1 

(49) 

whereGij = Gjiandgij  = gji. Thenthegijsatisfy 

g:1+g:2 = C l , ,  ‘T:,+R:2 = G 2 2 .  g,z(g11 + g 2 2 )  = G l 2 .  (50) 
Provided G 1 2  and ( G I ,  - G22)  d o  not both vanish the solutions of these equations 

are 
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where x = & 1. We therefore have four different sets of solutions depending on x and 
the sign of J(G,  l G z z  - G : 2 ) .  No phase arbitrariness is left in the 11, i) so the g i j  must be 
uniquely .soluble ; knowledge of the matrix elements of alone is therefore in- 
sufficient to completely determine those of Of,  so further conditions must be sought. 
These are provided by the matrix elements of O;+',O;+l,O~ ', which are obtained from the 
known actions of ,0;+l2 and 0; and related, using (I,  39) and the known matrix 
elements of Qp and to thegij. O;+',0;+120,+2 has four independent matrix elements, 
and each of these is a linear combination of the gij (once the numerical values for the 
matrix elements of QP and (OP)' are used) and a constant term arising from the I ,  term. 
Any three of the resulting simultaneous equations in the g i j  enables us to determine them 
uniquely. 

For the 1 = 2 states of ( 4 2 )  and (6,2), (0;)' turns out to be diagonal and degenerate, 
and in these cases equations (50) reduce to 

g:,+g:z = g: ,+g:2  = G l l ,  g,,(g,, + g , 2 )  = 0 (54) 

so g:, = g:,. If g ,  , = g,, then g , ,  = 0, but if  g ,  = -g,, then g,, need not be zero 
and (54) are inadequate for the solution of the g i j .  The latter was found to be the case for 
both above pairs of states, so that although in both cases is diagonal on the 12, 1 )  
and 12,2), neither states are eigenvectors of 0; itself. For (4,2) 0; is completely off- 
diagonal and its sign is determined by considering the value of (2,210; '0; '0i212, l) ,  
whereas for (6,2) it was found, by considering any three matrix elements of 0; '0; 
that 0; has both diagonal and off-diagonal matrix elements. Once the gij have been 
found, the eigenvalues of 0; are obtained by the usual method. 

4. Complete analysis of the (p, 0) representations 

I t  can be shown (Hughes 1973b) that for the SU(3) representations realized by wavefunc- 
tions of the three-dimensional harmonic oscillator, the invariants satisfy the relationship 
61, = IZ(4I2 + 1)'". From this it is easy to deduce that the representations were the 
(p, 0), for which I ,  = $p(p + 3) and I ,  = &p(p + 3)(2p + 3), and which have dimension 

Since no / degeneracy occurs in these representations, they can be fully analysed by 
the techniques of this paper. We give here an inductive proof of the following results : 
(a) 1 takes on the non-degenerate values p ,  p - 2, p - 4, . . . , 0 or 1, depending on whether p 
is even or odd ; (6) for 1 having any of the above values, the actions of the various operators 
on 11) are 

%P+ l)(P+2). 

0 - 2  0 + 2  I 11) = 24(1+ 1)4(1+2)4(p-l)(p+l+3)11) 

o;;lo,+lll) = 0:-1,0; ' 11 )  = 0 

O:-\O;211) = 2414(1- l )4(p+l+ l)(p-1+2)]1) (57) 
(21+ l)(p-1)@+1+3) ( 21+5 

0:211) = 2J6(1+ 1)2(1+2)2 

(21+ l ) (p+/+l)(p-1+2) 
21-3 

0;'11) = 2J6/2(1- 1)' 
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0pII) = J61(1+ 1)(2p+ 3) /1)  

Q F l I )  = 21(1+ 1 ) ( 4 p 2  + 12p- 612 -- 61- 27)11). 

(61) 

(62) 

The first step in the proof is to check that these formulae are valid for the highest I 
value, and this is easily done by substituting I = p in them and comparing the results 
with the corresponding formulae of $6 2 and 3 with q = 0. The fact that 0; l i p )  = 0 
shows that lp- I )  does not occur so that 1 .= p- 2 is non-degenerate. 

Now assume the formulae valid for some I differing from p by an even integer and 
deduce their validity for 11-2). Firstly, since I / +  1) is assumed not to exist and 
0; ' 11 )  = Oitfollowsthat/E- l)doesnotexist,andsincelisassumedtobenon-degenerate 
so then is 1 - 2. I t  therefore follows that : 

( I  - 210; 20;-2*/1- 2 )  = (/10:-220; 21 1) 

0;20:-2~11-2) = ~ ( 1 -  1)4(p+ I +  1 )(p - /+  2111 + 2)  

so 

which is just ( 5 5 )  with I replaced by 1-2. The formula for 0,'-2211-2) is then easily 
obtained and found to agree with (58). Also, since l I -  I )  does not exist, 0:-'211- 2 )  and 
0;-',0:-'211-2) both vanish. Knowing the actions of 0;-',0,'-12 and 0L20:-22 on Ii-2) 
enables us, using (I, 45) to (I, 48), to calculate the actions of 0:-130;-$, 0:-2401_22. Qp- 
and (0:- 2)2  on 11 - 2), the appropriate sign for 0:- 211 - 2) being then determined using 
0;.',0; '0:-2211-2) = 0. Also, knowing 0:-;0;-22j1-2) enables us  to calculate 
0;-2211-2). The results obtained are found to be those given in (b)  above with 1 replaced 
by 1-2. The validity of the formulae of (b )  for all I therefore follows by induction. the 
fact that 1 has minimum value 0 or 1 being a consequence of the presence of the factors 1 
and (1- 1) in equation (57). 

From (61) we see that if 10) occurs then 0g lO)  = 0. This is true of any representation 
(p, q )  containing a IO). as can easily be checked by using (I, 36)  and (I, 3 8 )  to express 

in terms of 0:-',0; ' and 0:-220;2 and noting that both these operators vanish 
when I = 0. Finally, the analysis of the contragredient representation (p, p )  follows from 
that of (p, 0) simply by changing the sign of I ,  and 0: :  otherwise the two sets of repre- 
sentations are identical. 

5. Conclusion 

We have seen here that the use of the 1 shift operators enables a solution of the state 
labelling problem of SU(3) in an O(3) basis to be given, any given representation (p .  q )  
being completely analysable into orthonormal 1 states. and all eigenvalues of the 
hermitian operators 0: and Q: being obtainable. The drawback of the method is that it 
provides an algorithm rather than closed formulae giving all matrix elements as explicit 
functions of p ,  q and 1. By the very nature of the problem, however. i t  is quite possible 
that an algorithmic solution is the best that could be hoped for. 

Nevertheless, closed formulae were obtained very easily for the (p. 0) and there is 
little doubt that the same would be true of the ( p ,  I ) .  Of the other representations we see 
most hope of obtaining closed formulae for the self-contragredient representations 
(p, i p ) .  We hope to consider these two sets of representations in a later paper. 

In this and the previous paper we have restricted our considerations to states of 
zero 1, eigenvalue, as a result of which many of the formulae obtained are valid only 
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when m = 0. The reduction in the algebraic computation necessary more than com- 
pensated for this slight loss of generality, especially since the eigenvalues of Qp and Of 
are anyway independent of m. An O(3) analysis of 0(4), O(3 , l )  and the euclidean group 
E(3) could easily be given using 1 shift operator techniques similar to the ones used here; 
since they contain no I degeneracies they would be far easier to treat than SU(3) and 
could be easily treated without the assumption that m = 0. 

In this paper it was assumed that for unitary irreducible representations (p, q )  of 
SU(3) the parameters p and q were integers satisfying p 2 q b 0. By more efficient use 
of the various hermiticity relations these values of p and q could have been derived 
although it would have been pointless to do so. However, if the generators q i  of SU(3) 
are replaced by iq, the non-compact group SL(3, R), which has O(3) as a maximal 
compact subgroup, is obtained. For this group the invariants can still be expressed in 
terms of p and q by formulae (I, 1) and ( I ,  2) and so the pair (p, q )  may still be used to 
label its irreducible representations. The unitary representations of SL(3, R)  will, 
however, be infinite dimensional so p and q will not have the same values as for SU(3). 
By simple modifications of the formulae of I it should be possible to use the 1 shift 
operators to analyse this group with respect to O(3) and to derive, making full use of the 
hermiticity relations, the values of p and q specifying its unitary representations. 

Techniques similar to those of these two papers can clearly also be used for larger 
groups. For example SU(4) contains an O(3) subgroup such that the generators, apart 
from the li, form both a five- and a seven-dimensional operator representation of O(3). 
I t  should be possible therefore to construct 1 shift operators Of ,  O:’, 0:’ and 
0p, 0: ’, 0: ’, 0: 3, and use them to give a full analysis of the representations of SU(4) 
with respect to this O(3) subgroup. 

Finally, note that all the most important representations occurring in the octet 
model of hadron physics have been dealt with here ; these are the quark representations 
( 1 , O )  and (1, l), the octet (2, l), the decuplets (3,O) and (3,3) and the 27-dimensional 
representation (4,2). It would be interesting to investigate whether the O(3) subgroup 
discussed here has any significance for hadrons. 
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Appendix. Eigenvalues of 0; and QP 

(a)  (4 .2) :  1 4  3 2 0 

0; 0 0 k18470 0 

Qp 360 -1512 396 0 
- 1908 
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I 5  4 3 2 I 

Op 78,6 88,6 6,/6(11i.241) -66,6 22,6 

Qp 432 -2456 24(3722,3529) -1812 196 

7 1 6  5 4 3 - 0 

Op 210,6 234,6 32OV6 0 r 6 ,  1158 0 
-44,6 

Qp 1428 -4068 - 8 ( 1 3 3 ~  -1512 1452 0 
6, 14569) - 2964 

1 2 I 

op 0 0 

Qp -108 -372 
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